

"Malaria: Mosquito Immunity and Transmission of the World's Major Killer"

Carolina Barillas-Mury
Laboratory of Malaria and Vector Research
Mosquito Immunity and Vector Competence Unit
NIH

Malaria

Malaria is a public health problem affecting 40% of the world's population.

More than 90% of all cases are in sub-Saharan Africa.

Worldwide prevalence of the disease is estimated to be in order of 220 million cases and 660,000 deaths per year (WHO 2012).

Malaria

 Malaria is caused by a parasite called *Plasmodium*, which is transmitted via the bites of infected mosquitoes.

 In the human body, the parasites multiply in the liver, and then infect red blood cells.

The vast majority of deaths occur among young children in Africa.

Endothelium

Syncytiotrophoblast

- A child dies of malaria every 45 seconds.
- Each year and estimated 10,000 women and 200,000 of their infants die as a result of malaria infection during pregnancy.

Anopheles gambiae is the major vector of malaria in Africa.

Outline

- 1. Midgut Epithelial Immunity and Complement Activation.
- Participation of the JNK pathway in mosquito antiplasmodial immunity.
- 3. Plasmodium falciparum evasion of the mosquito immune system.

Hypothesis

The nitration response is a two step reaction and the rate of these reactions determines the fate of the parasite.

Han et al., 2000

Kumar et al., 2004

In vivo midgut nitration

HPX2

HPX2 mediates protein nitration and limits Plasmodium survival.

Outline

- 1. Epithelial Nitration and Complement Activation.
- 2. Participation of the JNK pathway in mosquito antiplasmodial immunity.
- 3. Plasmodium falciparum evasion of the mosquito immune system.

JNK Pathway

- Development
- Immunity
- Apoptosis
- Stress response

The JNK pathway mediates antiplasmodial responses to *P. berghei* infection.

 The JNK pathway regulates the induction of HPX2 and NOX5 in response to ookinete midgut invasion.

TEP1-mediated lysis in P. berghei and P. faciparum

Outline

- 1. Epithelial Nitration and Complement Activation.
- 2. Participation of the JNK pathway in mosquito antiplasmodial immunity.
- 3. Plasmodium falciparum evasion of the mosquito immune system.

A. gambiae Refractory (R) strain

P. falciparum infections

Pf 7G8 - Brazil

ds LacZ dsTEP1 A В n = 23n = 23Live oocysts 10 10 Melanized Melanized C **Parasite** 96% 3% melanization

Pf NF54 - Africa

Immune evasion

Identification of *P. falciparum* gene(s) that allow some African strains to escape melanization in the *An. gambiae* refractory strain

Molina-Cruz et al., Science, 2013

Pfs47 KO phenotype in NF54 background

Effect of TEP1 silencing on Pfs47 KO phenotype

Hypothesis:

P. falciparum evades the A. gambiae immune system by disrupting JNK signaling.

NF54 wt

NF54 Pfs47 ko

Extreme geographical fixation of *Pfs47* and *Pfs48/45* variants

Hypothesis: The geographic structure of *Pfs47* alleles is determined by parasite selection by the mosquito vectors.

Geographic distribution of 30 *Pfs47* haplotypes identified in 178 *P. falciparum* human isolates.

Hypothesis: The geographic structure of *Pfs47* alleles is determined by parasite selection by the mosquito vectors.

Anopheles albimanus

Mosquito Immunity and Vector Competence Unit

Giselle De Almeida

Joshua Lieberman

Lindsey Garver

Alvaro Molina-Cruz

Ashley Haile

Corrie Ortega

Jared Winikor

Amy Alabaster

Lois Bangiolo

Mosquito Immunity and Vector Competence Unit

Jose Luis Ramirez

Urvashi Ramphul

Gaspar Canepa

Julio Castillo

Emma Taylor-Salmon

Rebecca Greene

Nitin Kamath

Oliver Billker Sanger Institute

Isabelle Morlais OCEAC, Yaoundé, Cameroon

Future Plans

Nafomon Sogoba Cheick Traore MRTC, Bamako, Mali

Martin Boulanger University of Victoria

Paulo Pimenta Inst. Rene Rachou, Fiocruz Belo Horizonte, Brazil

Laboratory of Malaria and Vector Research National Institutes of Health.

